

CONSTRUINDO RESILIÊNCIA CLIMÁTICA

Estratégias para o Sucesso Sustentável na Manufatura

SUMÁRIO

>>	Introdução	3
>>	Áreas-Chave de Foco	4
>>	Estratégias de redução de emissões e de redução do consumo de energia	5-10
>>	Eficiência e Otimização de Custos	11-22
>>	Maximizar a Utilização do Equipamento	22-30
>>	Principais Conclusões e Próximos Passos	31

Observação: A Iconics Inc. foi adquirida pela Mitsubishi Electric Corporation em 2019 e renomeada como Mitsubishi Electric Iconics Digital Solutions, Inc. em abril de 2025.

INTRODUÇÃO

O setor da Manufatura está na vanguarda dos desafios climáticos globais, sendo responsável por quase 30% do total de emissões de gases com efeito de estufa. À medida que os governos e as indústrias intensificam os esforços para atingir objetivos de emissões líquidas nulas até 2050, os fabricantes enfrentam uma pressão externa e interna crescente - por um lado, para alinhar as operações com os objetivos de sustentabilidade, mantendo a eficiência da produção e, por outro, para se manterem competitivos através da criação de resiliência climática.


À medida que os mandatos de sustentabilidade se tornam mais rigorosos a nível global, os fabricantes têm de navegar em estruturas como a Diretiva de Relatórios de Sustentabilidade Empresarial (CSRD) da UE e o Mecanismo de Ajustamento das Fronteiras de Carbono (CBAM), que impõem transparência e responsabilidade pelas emissões. Nos EUA, as Regras de Divulgação Climática da SEC exigem relatórios ambientais para empresas de capital aberto, enquanto políticas como o Plano de Ação de Conservação de Energia e Redução de Carbono da China incentivam a eficiência de recursos e a redução de carbono.

Para além dos riscos de conformidade, os fabricantes que atrasam a adaptação podem enfrentar custos operacionais mais elevados, perturbações na cadeia de fornecimento e uma diminuição da relevância no mercado à medida que a sustentabilidade se torna um critério de compra fundamental. Por outro lado, as empresas que adoptam estratégias de resiliência climática - como a poupança de energia, a eficiência dos recursos e a manutenção preditiva - podem garantir a estabilidade operacional a longo prazo e a liderança do mercado.

Os fabricantes devem adotar soluções que minimizem o investimento de capital e, ao mesmo tempo, ofereçam vantagens de sustentabilidade a longo prazo.

ÁREAS-CHAVE DE FOCO

PILARES FUNDAMENTAIS DA RESILIÊNCIA CLIMÁTICA PARA O SETOR DE MANUFATURA

Implementação de diagnósticos baseados em IA, utilização de hardware energeticamente eficiente e implementação de sistemas de fábrica inteligentes para minimizar o desperdício de energia e as emissões de carbono.

Aproveitar a automação e a tomada de decisões baseadas
 em dados para melhorar a eficiência da produção, reduzir o desperdício e simplificar as operações.

 Utilizar a manutenção preditiva e a gestão inteligente de activos para prolongar a vida útil do equipamento, evitar falhas e reduzir o tempo de inatividade.

Este white paper explora três pilares principais da resiliência climática que permitem que os fabricantes atinjam metas de sustentabilidade, mantendo a lucratividade e a eficiência. Ele também inclui estudos de caso detalhados de todo o mundo, exemplificando sua implementação bem-sucedida.

ESTRATÉGIAS DE REDUÇÃO DE EMISSÕES E DE REDUÇÃO DO CONSUMO DE ENERGIA

A redução das emissões e a otimização do consumo de energia são desafios críticos para os fabricantes que navegam pelas regulamentações ambientais e pelo aumento dos custos de energia. As instalações industriais podem reduzir significativamente o desperdício e melhorar a eficiência operacional através da integração da gestão de energia orientada por dados, da otimização de processos em tempo real e de hardware de elevada eficiência. Este capítulo explora as principais abordagens à redução de energia, incluindo diagnósticos com base em IA, automação em toda a fábrica e sistemas inteligentes de gestão de energia, com estudos de caso reais que demonstram o seu impacto.

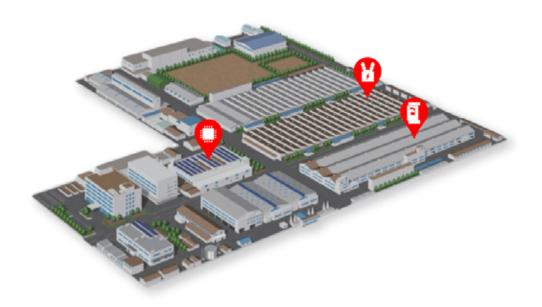
GESTÃO DE ENERGIA BASEADA EM DADOS

Al-driven application to reduce energy consumption

Understanding the current status

Detecting energy loss

Energy-saving actions


Causal diagnosis

Uma abordagem para reduzir o desperdício de energia envolve o rastreamento centralizado do consumo de energia e diagnósticos orientados por IA para identificar ineficiências. Ao monitorar continuamente eletricidade, água, ar, gás e outras fontes de energia, as empresas podem detectar fatores de perda, analisar causas e medir o impacto de ações corretivas.

Um exemplo dessa abordagem é o EcoAdviser, um sistema de gerenciamento de energia que alavanca a tecnologia de IA para dar suporte a atividades de economia de energia. Ele fornece análise automatizada de perda de energia, visualização em tempo real de tendências de consumo e avaliações comparativas de medidas de eficiência implementadas.

Na Fukuyama Works, no Japão, a gestão de energia assistida por IA com o EcoAdviser ajudou a identificar e resolver ineficiências, reduzindo significativamente as emissões de CO₂ e os custos operacionais. Ao visar e otimizar o equipamento de elevado consumo, a instalação alcançou poupanças anuais e repetíveis de milhares de dólares, que continuam a acumular-se ano após ano, reduzindo a procura de energia contratual em 25%.

DIAGNÓSTICO DAS EMISSÕES DE CO₂ NA FÁBRICA DE FUKUYAMA

PROBLEMA: Elevadas emissões de CO₂ devido a perdas de energia não identificadas.

Dificuldade em identificar o uso ineficiente de energia.

SOLUÇÃO: Implementou o EcoAdviser, um sistema de gerenciamento de energia orientado

por IA, para diagnosticar fatores de perda de energia. Visualizou tendências de

consumo de energia e identificou equipamentos de alto consumo.

RESULTADO: Redução de 25% na demanda de energia do contrato. Poupanças de custos

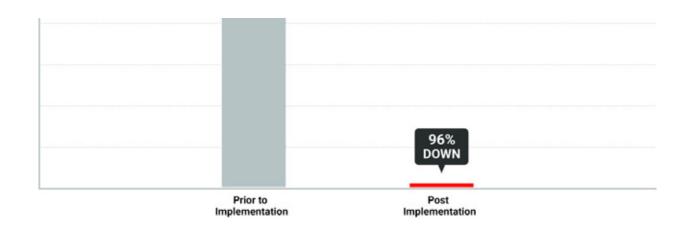
anuais e repetíveis que continuam a acumular-se ano após ano. Melhoria das estratégias de rastreamento e redução de CO₂ e estratégias de redução.

Energy-loss factor diagnosis

Diagnosis period: 7/1/2020 - 9/30/2020 Equipment name: Assembly Line A Energy saving points: (1) Equipment time - loss (start - up) Energy - loss factor Expected improved Does this information Rank Energy-loss factor (type) (detail) result[\$/Year] help you? Manufacturing starting time 10[Time] 325 Yes No 173 Manufacturing starting time 9[Time] Yes No Manufacturing editing time 22[Time] 61 Yes No Production volume 270~`320[Piece] 79 Yes No Day of the week Monday 246 Yes No Apply evaluation <Tips> Using By Day of the week Equipment time-loss (start-up)(average) graphs, you can compare operational statuses which losses are high and low. Then you can find some energy-saving activities. By Day of the week Eqiopment time-loss (start-up)(average) graphs 200 n=9 150 n=11 n=13 n=7 100 50 0 Monday Tuesday Wednesday Thursday Friday Limited by Day of the week_Monday Equipment time-loss (start-up) graph 300 200 100 7/6/2020 7:21 AM 7/20/2020 7:31 AM 8/3/2020 8:15 AM 8/24/2020 7:24 AM 9/14/2020 7:11 AM 7/13/2020 12:03 PM 7/27/2020 7:52 AM 8/17/2020 4:01 AM 9/7/2020 7:06 AM

Close

OTIMIZAÇÃO DE PROCESSOS EM TODA A FÁBRICA



Outra estratégia essencial para melhorar a eficiência energética e o desempenho da produção é integrar equipamentos de economia de energia que otimizam as operações, reduzem o tempo de inatividade e melhoram o uso geral de energia. Soluções flexíveis, como inversores de eficiência energética, motores IPM e sistemas de energia regenerativa, são cruciais para atingir essas metas.

Tecnologias como servo drives MELSERVO-J5 permitem que os fabricantes aproveitem a energia regenerativa, enquanto inversores com eficiência energética contribuem para projetar aplicações mais sustentáveis. Ao adotar essas soluções, as fábricas podem minimizar o desperdício de energia, reduzir os custos operacionais e melhorar a eficiência a longo prazo.

Um programa estruturado de redução de energia baseado em dados em tempo real e controlo preciso do motor permitiu à Rane Madras Limited, um fabricante de peças para automóveis na Índia, reduzir significativamente o consumo de energia. Ao implementar a tecnologia e-F@ctory combinada com inversores de frequência variável nas suas operações, a empresa conseguiu uma redução de energia de 96% nos processos de prensagem de metal, poupando aproximadamente ₹3 milhões (INR) por ano e reduzindo a utilização total de eletricidade em 380.000 unidades. Esta iniciativa demonstrou como as soluções de fabrico digital podem abordar a eficiência energética e os desafios de produção.

OTIMIZAÇÃO DE ENERGIA NA RANE MADRAS LIMITED, ÍNDIA

PROBLEMA: Alto consumo de energia e falta

de energia elétrica afetando a produção. Operações ineficientes de motor levando ao uso

excessivo de eletricidade.

SOLUÇÃO: 546 inversores de frequência

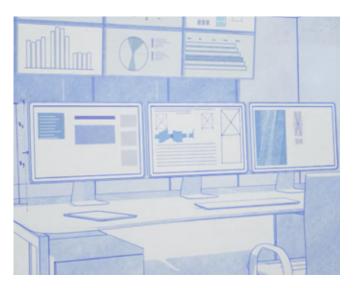
variável instalados para otimizar a velocidade do motor e o uso de energia. Monitoramento integrado em tempo real para combinar o

uso de energia com as necessidades operacionais.

RESULTADO: 96% de redução de energia nas

operações de prensa de metal. Poupança anual de eletricidade de 380.000 unidades. Redução de custos anual de ₹3 milhões (INR). Reconhecida com o Grande Prêmio Deming pelos esforços de sustentabilidade.

EFICIÊNCIA E OTIMIZAÇÃO DE CUSTOS

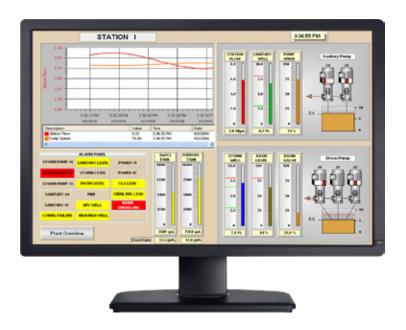


INTRODUÇÃO

Melhorar a eficiência e otimizar custos são estratégias-chave para aumentar a resiliência climática e ganhar uma vantagem competitiva ao mesmo tempo em que promovem um futuro industrial sustentável. Os fabricantes podem otimizar processos, reduzir o desperdício operacional e aumentar a produtividade alavancando soluções avançadas de software e tecnologia de automação de última geração.

Este capítulo explora abordagens de eficiência e otimização de custos usando software SCADA, incluindo monitoramento de processos em tempo real, automação inteligente e sistemas de controle modular, com estudos de caso de suporte demonstrando seu impacto em vários setores.

MONITORAMENTO DE PROCESSOS EM TEMPO REAL E OTIMIZAÇÃO ORIENTADA POR DADOS


Um método essencial para melhorar a eficiência envolve o monitoramento em tempo real de processos industriais usando o software SCADA (Supervisory Control and Data Acquisition). Esses sistemas permitem que as empresas visualizem operações, analisem tendências históricas de dados e tomem decisões baseadas em dados que melhoram a eficiência de custos. Soluções modernas centradas em dados integram-se a plataformas de nuvem, computação de ponta e tecnologias de loT para aprimorar a automação industrial.

Uma dessas soluções é o conjunto de software de automação GENESIS da ICONICS, que permite que os fabricantes monitorem, analisem e otimizem as operações industriais em tempo real. O software suporta visualização avançada, análise preditiva e conectividade perfeita com a infraestrutura de fábrica existente.

A AFV Beltrame S.p.A., uma produtora líder de aço europeia, buscava um sistema de otimização de processo baseado em SCADA para aumentar a eficiência no controle de poluição em fornos de fusão, resfriamento de plantas e inserção de ligas de ferro em silos. A empresa precisava de uma solução escalável e perfeitamente integrada para trabalhar com bancos de dados Microsoft SQL existentes e PLCs Allen Bradley.

Ao implementar o software ICONICS GENESIS, a AFV Beltrame obteve monitoramento de processo em tempo real em 30 instalações, melhorando a flexibilidade operacional e reduzindo significativamente o tempo de desenvolvimento interno de software. A escalabilidade do sistema permite expansão e adaptação contínuas conforme a empresa evolui.

AFV BELTRAME S.P.A., ITÁLIA – OTIMIZANDO A FABRICAÇÃO DE AÇO

PROBLEMA: Monitoramento de processo ineficiente em várias plantas siderúrgicas.

Dificuldade de integração com infraestrutura existente.

SOLUÇÃO: Implementou o software ICONICS GENESIS SCADA para visualização e

controle de processos em tempo real.

RESULTADO: Monitorização de processos mais rápida e eficiente, custos operacionais

reduzidos, integração perfeita de sistemas e uma estrutura de transformação

digital escalável.

EFICIÊNCIA DE PRODUÇÃO NA GERAÇÃO DE ENERGIA VERDE

O setor de energia renovável enfrenta desafios operacionais únicos, particularmente na variabilidade da produção de energia, programação de manutenção e controle de custos. Soluções de gerenciamento de dados em tempo real e SCADA ajudam os provedores de energia a otimizar as operações de parques eólicos, reduzir ineficiências e diminuir os custos de manutenção.

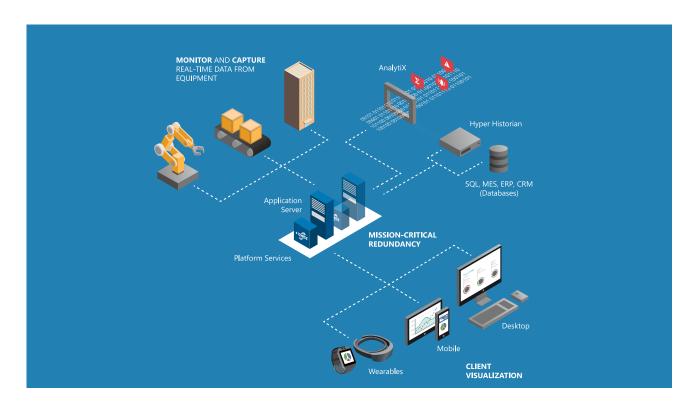
A AES Wind Generation, uma empresa internacional de energia com foco em geração de energia e energia renovável, buscou uma solução para melhorar o monitoramento de turbinas em tempo real, validação de desempenho e análise de dados históricos. Implementando o ICONICS GENESIS64™ e o Hyper Historian™, a AES integrou o rastreamento de desempenho de turbinas e a análise preditiva, reduzindo a dependência de desenvolvedores terceirizados. O monitoramento e o gerenciamento integrados resultam em economias de custo significativas para a AES — diretamente por meio de operações otimizadas e indiretamente pela simplificação do gerenciamento do sistema, reduzindo a dependência de fornecedores terceirizados para manutenção e integração, ao mesmo tempo em que garante que essa fonte de energia alternativa vital permaneça disponível para consumo.

AES WIND GENERATION - MELHORANDO A EFICIÊNCIA DO PARQUE EÓLICO

PROBLEMA: Altos custos operacionais devido à produção de energia imprevisível e ao

monitoramento ineficiente do desempenho da turbina.

SOLUÇÃO: Implementou ICONICS GENESIS64™ SCADA e Hyper Historian™ para análise


de dados em tempo real e monitoramento de desempenho.

RESULTADO: Menor dependência de desenvolvedores terceirizados, menores custos

operacionais, melhor otimização de turbinas em tempo real e acesso seguro ao

sistema baseado na web.

MONITORAMENTO CENTRALIZADO DE INFRAESTRUTURA PARA ECONOMIA DE CUSTOS

Gerenciar instalações industriais de larga escala frequentemente envolve múltiplos sistemas de monitoramento díspares, levando a ineficiências, silos de dados e aumento de custos operacionais. Unificar esses sistemas em uma plataforma centralizada em tempo real pode simplificar a detecção de falhas, manutenção e gerenciamento de energia, levando a reduções de custo mensuráveis.

A Nagoya Works da Mitsubishi Electric, uma instalação de fabricação avançada, dependia anteriormente de sistemas de monitoramento separados em 30 prédios, o que criava ineficiências no rastreamento de energia e detecção de falhas. Ao implementar o ICONICS GENESIS64™, a empresa unificou seus sistemas de monitoramento, reduzindo o tempo de inatividade e permitindo a administração segura da infraestrutura remota.

MITSUBISHI ELECTRIC, NAGOYA WORKS, JAPÃO – ECONOMIA DE CUSTOS POR MEIO DO MONITORAMENTO CENTRALIZADO

PROBLEMA: Sistemas de monitoramento complexos e fragmentados, resultando em altos

custos operacionais e ineficiências.

SOLUÇÃO: Implementou o ICONICS GENESIS64™ para monitoramento de energia em

tempo real e recursos de acesso remoto.

RESULTADO: Economia anual de custos de ¥ 1 milhão, melhor detecção de falhas e maior

escalabilidade do sistema para futuros esforços de sustentabilidade.

ROBÓTICA COLABORATIVA PARA FABRICAÇÃO SEGURA E EFICIENTE

Integrar robôs colaborativos em linhas de produção aumenta a segurança do trabalhador, a eficiência do processo e a flexibilidade da automação. Por meio do planejamento dinâmico de caminho e programação visual, esses robôs podem se adaptar em tempo real, reduzindo significativamente os tempos de configuração e aumentando a eficiência da produção.

Um exemplo notável desta prática é a colaboração entre a Hella Electronics e a Mitsubishi Electric para implantar um sistema de robô colaborativo projetado para automação robótica segura e eficiente. A implantação dos robôs colaborativos da série ASSISTA da Mitsubishi Electric permitiu que vários braços robóticos trabalhassem com segurança ao lado de funcionários humanos, utilizando prevenção de colisões e programação visual para agilizar as operações da fábrica.

HELLA ELECTRONICS - IMPLEMENTAÇÃO DA ROBÓTICA COLABORATIVA

PROBLEMA: A necessidade de melhorar a automatização, mantendo a segurança dos

trabalhadores e a flexibilidade operacional.

SOLUÇÃO: Implementar os robôs colaborativos da série ASSISTA da Mitsubishi Electric,

com planeamento de movimentos em tempo real, na Hella Electronics.

RESULTADO: Esta implementação reduziu o tempo de configuração da fábrica de semanas

para dias, melhorou a flexibilidade da produção e reduziu o custo total de

propriedade da automação robótica.

VEJA O VÍDEO DO ESTUDO DE CASO

PROGRAMAÇÃO CNC MODULAR PARA UMA MAIOR FLEXIBILIDADE DE PRODUÇÃO

Para fabricantes que usam máquinas de controle numérico computadorizado (CNC), ineficiências na programação e solução de problemas podem levar a alto tempo de inatividade e aumento de custos. Uma abordagem modular para programação CNC permite reutilização de software, comissionamento mais rápido e recursos aprimorados de solução de problemas.

A Full House Machinery, EUA, fabricante de máquinas de pré-pendurar portas, enfrentou longos tempos de comissionamento e programação CNC ineficiente. Ao adotar os PLCs Q-Series, GOT2000 HMIs e C70 CNC Controller da Mitsubishi Electric, a empresa reduziu o tempo de comissionamento em 75%, permitindo programação mais rápida e diagnósticos remotos.

FULL HOUSE MACHINERY - MODERNIZAÇÃO DE SISTEMAS CNC

PROBLEMA: Programação CNC ineficiente que exigia uma extensa resolução de problemas

e apoio no local.

SOLUÇÃO: Implementou um sistema de controle moderno com recursos de programação

CNC modular.

RESULTADO: Redução de 75% no tempo de colocação em funcionamento, maior eficiência

de programação, melhor resolução remota de problemas e uma posição de

mercado mais forte.

MAXIMIZAR A UTILIZAÇÃO DO EQUIPAMENTO

INTRODUÇÃO

Maximizar a utilização do equipamento é uma estratégia essencial para aumentar a eficiência operacional, reduzir custos e garantir a sustentabilidade a longo prazo nas operações industriais e de fabricação. Ao alavancar a manutenção preditiva alimentada por IA, as empresas podem identificar proativamente falhas potenciais, reduzir o tempo de inatividade e otimizar os cronogramas de manutenção. Essas estratégias estendem a vida útil do equipamento e contribuem para melhor alocação de recursos e eficiência de produção.

Este capítulo explora métodos para melhorar a utilização de equipamentos, incluindo monitoramento em tempo real, manutenção preditiva e diagnósticos baseados em IA, com estudos de caso reais demonstrando seu impacto em diferentes setores.

MONITORAMENTO DE PRODUÇÃO EM TEMPO REAL PARA EFICIÊNCIA DE EQUIPAMENTOS

Garantir a utilização ideal do equipamento requer monitoramento contínuo do desempenho da produção e das condições da máquina. Ao coletar e analisar dados de produção em tempo real, as empresas podem identificar ineficiências, detectar sinais de alerta precoce de falha do equipamento e tomar ações corretivas antes que as avarias ocorram.

Na Nagoya Works da Mitsubishi Electric, o Edifício E4 abriga sistemas de montagem de superfície altamente automatizados para fabricar CLPs e IHMs. A instalação buscou melhorar a eficiência reduzindo erros de coleta no processo de montagem de componentes computadorizados, que estavam causando lentidão.

Ao implementar a tecnologia eF@ctory, a coleta de dados em tempo real permitiu comparações de produção planejada vs. real, permitindo rápida detecção de problemas e ação corretiva. Além disso, o sistema introduziu alertas de manutenção preditiva, garantindo a manutenção antes que falhas críticas ocorressem.

Além de melhorar a eficiência da produção, a abordagem orientada por dados melhorou a colaboração entre departamentos. Os engenheiros puderam fornecer às equipes de design dados concretos de produção, levando a designs de componentes otimizados que melhoraram a capacidade de fabricação.

NAGOYA WORKS, JAPÃO – MELHORANDO A UTILIZAÇÃO DE EQUIPAMENTOS COM DADOS EM TEMPO REAL

PROBLEMA: Lentidão na produção devido a erros de coleta na montagem automatizada.

SOLUÇÃO: Implementou o eF@ctory para monitoramento de dados em tempo real e

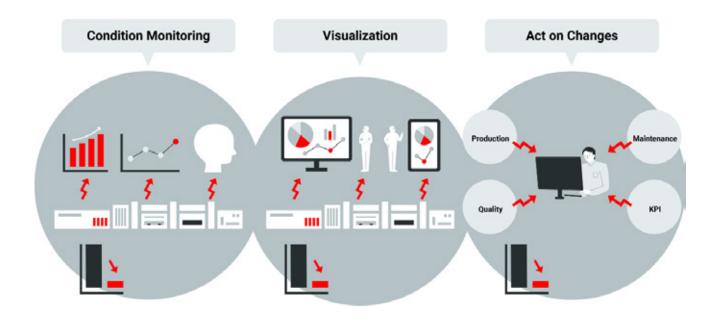
manutenção preditiva.

RESULTADO: Detecção de problemas mais rápida, tempo de inatividade reduzido,

melhor colaboração entre as equipes de produção e design e maior eficiência

de fabricação.

MANUTENÇÃO PREDITIVA PARA OPERAÇÕES CONTÍNUAS



Para indústrias que exigem operações 24/7, falhas inesperadas de equipamentos podem levar a perdas financeiras significativas e interrupções operacionais. Soluções de manutenção preditiva usam monitoramento de condições e diagnósticos em tempo real para detectar anomalias antes que as falhas ocorram, reduzindo a necessidade de reparos emergenciais dispendiosos.

Stadtwerke Rotenburg an der Fulda, uma estação municipal de tratamento de águas residuais na Alemanha, enfrentava falhas frequentes de bombas devido a falhas de projeto, levando a altos custos de reparo e tempo de inatividade não planejado. Como uma instalação que deve operar continuamente, a empresa precisava de uma solução proativa para detectar falhas com antecedência.

A planta pôde detectar anomalias antes de falhas críticas implementando um sistema de monitoramento de condições com análise de vibração. Isso permitiu manutenção preventiva, estendendo a vida útil do equipamento e reduzindo os custos de reparo. A solução foi integrada perfeitamente à infraestrutura existente sem interromper as operações diárias.

STADTWERKE ROTENBURG AN DER FULDA, ALEMANHA – MANUTENÇÃO PREDITIVA NA GESTÃO DE ÁGUAS RESIDUAIS

PROBLEMA: Altos custos de reparo e tempo de inatividade não planejado devido a falhas

frequentes na bomba.

SOLUÇÃO: Instalou a tecnologia eF@ctory para análise de vibração em tempo real para

detecção precoce de problemas e manutenção preditiva.

RESULTADO: Redução de 30% nos custos de reparo, operação ininterrupta 24 horas por dia,

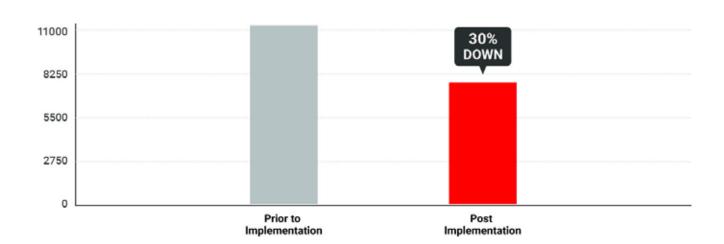
7 dias por semana, solução escalável para outras aplicações industriais.

Implement a predictive approach and discover pure profit

Reduced labour and maintenance costs

Across-the-board improvement

Guaranteed high quality



Around-the-clock plant supervision

Chemical and energy consumption under control

DIGITALIZANDO A EXPERIÊNCIA PARA MELHORAR A MANUTENÇÃO E A EFICIÊNCIA

Muitos processos de produção dependem de expertise humana e monitoramento manual, criando riscos na transferência de conhecimento e consistência da produção. Ao digitalizar conhecimento especializado e automatizar diagnósticos com IA, as empresas podem reduzir a dependência da intuição humana, estabilizar a qualidade e melhorar a eficiência.

A Lotte, uma das maiores produtoras de confeitaria do Japão, dependia da expertise de engenheiros qualificados para manter a eficiência da produção em sua fábrica de Urawa. Essa dependência representava riscos devido à potencial escassez de mão de obra e inconsistências de processo.

Sensores baseados em IoT foram introduzidos para:

- 1. Monitorar temperatura, vibração e pressão em tempo real para resolver isso.
- 2. A análise de dados identificou correlações-chave entre qualidade do produto e consumo de energia, permitindo manutenção preditiva, otimização de qualidade e redução de supervisão humana.

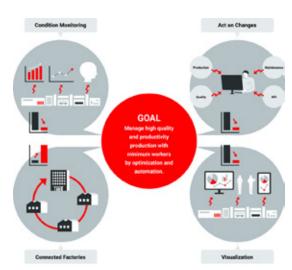
Desde então, o sistema foi expandido por toda a fábrica, melhorando a produtividade e a eficiência e, ao mesmo tempo, preparando o cenário para a automação futura.

LOTTE CO., LTD., JAPÃO – GESTÃO DE FÁBRICA ORIENTADA POR DADOS

PROBLEMA: Dependência de engenheiros

qualificados para manutenção e estabilidade do processo.

SOLUÇÃO: Implementou sensores baseados


em loT para digitalizar

conhecimento especializado e automatizar o monitoramento.

RESULTADO: Redução de falhas inesperadas,

melhoria da qualidade do produto e melhor tomada de decisões por meio de análise de

dados em tempo real.

DIAGNÓSTICOS COM TECNOLOGIA DE IA PARA MANUTENÇÃO ECONÔMICA

O software de diagnóstico baseado em IA tem o potencial de ajudar os fabricantes a reduzir custos desnecessários de manutenção ao prever tempos ideais para substituições de consumíveis e cronogramas de manutenção.

O MELSOFT MaiLab, uma ferramenta de análise de dados alimentada por IA, permite que não especialistas aproveitem insights de dados, otimizem cronogramas de manutenção e melhorem a produtividade. A ferramenta pode:

- Preveja o momento ideal de substituição de consumíveis, reduzindo o tempo de inatividade desnecessário.
- Digitalize o conhecimento especializado para auxiliar na sucessão de habilidades e no treinamento da força de trabalho.
- Evite falhas repentinas monitorando continuamente as condições do equipamento.
- Melhore o controle de qualidade automatizando as inspeções de qualidade da produção.

Ao usar o MaiLab, os fabricantes podem reduzir os custos operacionais, minimizar o tempo de inatividade das máquinas e garantir um gerenciamento eficiente da força de trabalho.

PRINCIPAIS CONCLUSÕES E PRÓXIMOS PASSOS

Os estudos de caso neste white paper destacam que:

- 1. As metas de resiliência climática e eficiência operacional são atingíveis e economicamente benéficas.
- 2. As empresas que integram automação, tecnologias de eficiência energética e tomada de decisão baseada em dados estão reduzindo custos e emissões e fortalecendo sua posição de mercado e conformidade regulatória.
- 3. Essas empresas demonstram que sustentabilidade e lucratividade podem andar de mãos dadas ao otimizar processos, minimizar o tempo de inatividade e preparar as operações para o futuro. Para construir um futuro de manufatura resiliente e sustentável, as empresas devem investir em soluções escaláveis que se alinhem à infraestrutura existente, procurar maneiras de alavancar IA e ferramentas digitais para otimizar as operações e priorizar a eficiência energética por meio de manutenção preditiva e automação inteligente.
- 4. Ver a resiliência climática como uma estratégia de negócios de longo prazo, em vez de apenas uma obrigação regulatória, será fundamental para manter a competitividade em um cenário industrial em evolução.

- 5. Ao tomar medidas proativas hoje, os fabricantes podem:
- Reduzir custos,
- Aumentar a eficiência,
- Garantir sucesso a longo prazo, ao mesmo tempo em que contribuem para uma indústria global mais sustentável.

Automating the World

Criando Soluções Juntos.

Produtos de Distribuição de Baixa Tensão

Transformadores, Produtos de Distribuição

Eficiência Energética

Produtos de Monitoramento de Energia e Produtos de Energia (UPS) e Ambientais

Controladores Compactos e Modulares

Servos, Motores e Inversores

Visualização: (HMIs)

Produtos de Edge Computing

Controle Numérico (NC)

Robôs Colaborativos e Industriais

Software de SCADA. Análise e Simulação

A linha de produtos da Mitsubishi Electric, desde diversos controladores e acionamentos até dispositivos de economia de energia e máquinas de processamento, ajuda você a automatizar o seu mundo. Eles são sustentados por software, sistemas inovadores de monitoramento de dados e modelagem, apoiados por redes industriais avançadas e conectividade Edgecross IT/OT. Juntamente com um ecossistema global de parceiros, a automação industrial (FA) da Mitsubishi Electric tem tudo para tornar a IoT e a Manufatura digital uma realidade.

Com um portfólio completo e capacidades abrangentes que combinam sinergias com diversas unidades de negócios, a Mitsubishi Electric oferece uma abordagem integrada para que as empresas possam enfrentar a transição para energia limpa e conservação de energia, neutralidade de carbono e sustentabilidade, que agora são requisitos universais para fábricas, edifícios e infraestrutura social.

Nós, da Mitsubishi Electric FA, somos seus parceiros de soluções, prontos para trabalhar com você enquanto você dá um passo em direção à realização de uma manufatura e sociedade sustentáveis por meio da aplicação da automação. Vamos automatizar o mundo juntos!

MITSUBISHI ELECTRIC CORPORATION

SEDE CORPORATIVA: TOKIO BLDG., 2-7-3, MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPÃO NAGOYA WORKS : 1-14, YADA-MINAMI 5, HIGASHI-KU, NAGOYA, JAPÃO

MITSUBISHI ELECTRIC DO BRASIL COMÉRCIO E SERVIÇOS LTDA. AV. ADELINO CARDANA, 293 - 19° e 21° ANDARES CENTRO - 06401-147 BARUERI/SP (11) 4689-3000 AV. GISELE COSTANTINO, 1578 JD. MARIA JOSÉ - 18110-650 VOTORANTIM/SP (15) 3023-9000

www.mitsubishielectric.com.br/cnc | contato.cnc@mitsubishielectric.com.br

in mitsubishielectric.com.br/linkedin

